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Abstract 
A wearable 1920×1080 160-degree object viewpoint recognition 

SoC is realized on a 6.38mm2 die with 65nm CMOS technology. This 
system focuses on enhancing the capability for wide viewpoint and 
long-distance recognition while reducing the computation of feature 
matching process. The recognition accuracy is improved from 29% to 
94% under full HD resolution for a 50m-far traffic light compared 
with the performance under VGA (640×480). Object viewpoint pre-
diction (OVP) supports 160-degree object viewpoint differences. 85% 
of power consumption and 75% of memory bandwidth are reduced 
via proposed visual vocabulary processor (VVP). 52mW power 
consumption with 25.9GOPS/mm2 area efficiency is achieved. 

Introduction 
Recently, mobile vision technologies, such as augmented reality, 

robot vision, and visually-impaired electronic aids, have been de-
veloped to assist people and make our lives more convenient. How-
ever, in many circumstances especially when wearing these devices in 
outdoors, state-of-the-art techniques show limited performance. We 
attribute this phenomenon into three major causes: (1) difficulty in 
detecting long-distance or small-sized objects, (2) poor recognition 
accuracy under large object viewpoint variation and dramatic camera 
ego-motions and (3) high power consumption due to the complex 
computation and frequent memory access. 

In this paper, we propose a full HD 160-degree (80° for one side) 
object viewpoint recognition SoC as shown in Fig. 1. For overcoming 
the above shortages, three prominent characteristics are introduced in 
our system. Firstly, to recognize objects at far distance or with small 
size, the proposed vision recognition system is designed for full HD 
resolution with 30fps. Higher resolution leads to better performance 
in recognizing an object occupying a small portion of an image as 
illustrated in Fig. 1. Secondly, OVP is proposed to allow 160-degree 
variation of object appearance. Through synthesizing predicted pose 
candidates of an object, the capability of viewpoint variation toler-
ance is significantly enhanced without feeding extra images into the 
database. Lastly, VVP is designed to simplify the complicated com-
putation. Existing object recognition systems [1-3] operate object 
recognition in feature matching stage and require frequent memory 
accesses. More memory access leads to higher power consumption 
that is critical in wearable applications. In this work, we advance the 
matching process from feature level to object level via VVP. It uti-
lizes the conceptions of Bag-of-Words (BoW) object representation 
and the vocabulary tree [4] to characterize an object as a histogram 
vector. Instead of matching features that results in thousands of 
memory fetching, VVP only compares the histogram vector with 
memory access once to recognize an object. Combined with the above 
three distinguished characteristics, the proposed recognition SoC 
achieves both high accuracy and power efficiency for wearable vision 
applications. 

Wearable Recognition SoC Architecture 
Fig. 2 shows the block diagram of the proposed visual recognition 

system. The whole system can be roughly divided into two levels, 
feature-level and object-level. For feature-level operation, the hu-
man-centered design (HCD) is the preprocessing stage for our system. 
It is composed of camera motion stabilization (CMS), OVP, and 
attention tracking (AT) engine. CMS computes camera motion by 
tracking static objects in video sequence and further stabilizes video 
by compensating severe translational camera ego-motion in each 
frame. In our system, OVP provides maximal 160-degree viewpoint 

of object appearance through predicting the possible poses from CMS. 
AT defines the ROI on the current frame from previous spatial in-
formation of the detected object. Feature detection and description 
modules, which implement SIFT algorithm [5], extract features from 
attention regions of the image. Feature matching processor performs 
conventional all-feature matching every thirty frames. For the rest of 
frames, the operating procedure is raised into the object-level 
processing. VVP handles feature voting within ROI to gather a cluster 
of features to represent an object as a histogram vector. The object 
histogram comparator in VVP compares the histogram vectors with 
referenced objects in the database to classify the categories of the 
detected target.  

Detailed Circuits of VVP and HCD 
To accelerate the speed of object matching, a massively-parallel 

architecture VVP is employed to achieve the real-time processing 
capability and the low-power-consumption requirement. In each stage 
of VVP, there are two distance processors, each of which includes 16 
parallel processing elements (PE) and a tree-like adder for the calcu-
lations of the Euclidean distance as shown in Fig. 3. There are six 
stages in VVP architecture which is able to compute the 64-word 
representation of an input vector with a 16 dimensions/cycle 
throughput. The hierarchical memory, which contains 126 words in 
total, has 6 banks of memory to offer the data to the distance pro-
cessors for the nearest-neighbor computations in each stage. The 
distance processors are connected to their corresponding banks of the 
hierarchical memory, and the max bandwidth of 343GB/s can be 
achieved when operating under the frequency 200MHz. It requires 
only 8 cycles to process a 128-dimensional vector, and more than 5 
times of the bandwidth is saved compared to the 
non-binary-tree-based architecture. 

Fig. 4 depicts the detail architecture of HCD. HCD consists of CMS, 
AT, and OVP modules. CMS contains a 128 parallel vector 
processing elements (VPE) cluster to compute confidential weighting 
for each feature as time elapses. A tree-based accumulator processes 
each feature within 14 cycles in pipeline manner and analyzes the 
global camera motion. The AT implements Generalized Hough 
Transform algorithm [6] with 8 parallel processors and 4 Hough-table 
voting (HV) mechanisms to group features of each object in the first 
frame and generates attention windows for the next fame. The sub-
sequent 29 frames receive the input camera motion from CMS to 
predict attention windows for target objects. OVP is adopted to syn-
thesize ROIs with multiple viewpoints of object poses according to 
the estimated viewpoint parameters from CMS. The SIFT processing 
module is functioned on the synthesized ROIs to extract features with 
variant viewpoint tolerance. 

Implementation Results 
Fig. 5 reveals the chip specification of the proposed system. The 

wearable recognition SoC is implemented in 65nm CMOS process 
with 6.38mm2 including IO and bonding pad. For 1920×1080 with 
30fps video sequences, only 52mW is consumed under 200MHz. Fig. 
6(a) shows that the bandwidth of matching process is reduced by 97% 
through VVP processing. Above 94% recognition accuracy is ac-
complished within 80° of object viewpoint in one side (160° in total) 
as illustrated in Fig. 6(b). The peak performance is 165GOPS while 
the average power efficiency is 1.18TOPS/W. The area efficiency of 
25.9GOPS/mm2 is 2× better than the previous works [2][3]. Overall 
system comparison is listed in Fig. 7. Our proposed work exhibits 
remarkable performance in functionalities and efficiencies. 
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Fig. 1 System flow of the proposed wearable recognition SoC 
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Fig. 2 System block diagram 
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Fig. 3 Visual vocabulary processor architecture 
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Fig. 4 Architecture of human-centered design 

Technology TSMC 65nm 1P9M CMOS
Die Size 2.5mm x 2.6mm

Gates / SRAM 907.39K Gates / 40KB
Operating Freq. 200MHz

Power Supply Core Power 1.0V
Power Consumption Average 52.5mW
Peak Performance 164.95 GOPS
Power Efficiency 1.18 TOPS/W

Input Image Full HD(1920x1080 30fps) Video Image
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Fig. 5 Chip specification and photograph 
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Fig. 6 Implementation results 

 

 
Fig. 7 Comparison with the previous works 
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